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SUMMARY

A simple hypothesis is offered as an explanation for the large discrep-
ancy between theory and experiment of axially compressed cylindrical shells.
Tt is suggested that the very low experimental buckling loads (when buckling
does not occur at the ends) are caused by local "flat spots.”" A critical size
of imperfection is given and the buckled mode shape is discussed. These
arguments are also applied to other common shell buckling problems.

INTRODUCTION

The following simple ideas are offered on the problem of the buckling of
an axially compressed cylindrical shell. These qualitative ideas hopefully
will give some further clues to the explanation of the discrepancy between the
theoretical and experimental buckling loads of a cylinder.

It is recognized by most engineers concerned with this problem that imper-
fections of many types cause the lowering of the buckling load (see ref. 1 for
a history of this problem). The remarks presented herein pertain only to
imperfections in the shell geometry rather than those associated with boundary
conditions, loading, material properties, etc. These remarks apply to conven-
tionally manufactured, moderately long cylinders in which the typical experi-
mental buckling load is well below the theoretical loads (say, 10-40 percent
of the theoretical load where O(a/h) = 1000).

NOTATION
a radius of cylinder
b imperfection dimension
D bending rigidity
E Young'!s modulus
h shell thickness

NX axial stress resultant



Ne circumferential stress resultant

Py critical load, positive in compression
R radius of sphere

ol deviation in radius

v Poisson's ratioc

Ty critical stress, positive in compression

DISCUSSION OF IMPERFECTIONS

Axially Loaded Cylinders

The first point concerns an idea that occurs to designers who are famil-
iar with the typical experimental spread of buckling loads. This idea is that
it might be better to design a cylinder with a noncircular cross-sectional
shape having a lower theoretical buckling lcad if that load could be reliably
predicted so that the design load could be above that for a circular cylinder.
The correspondence between eXxperiment and theory is quite good Tfor the buck-
ling of flat plates, so the simplest shape to look at is a square cylinder.
Let us choose the square dimensions such that the cross-sectional area is the
same as that for the comparable circular cylinder as shown in sketch (a).
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Sketch (a)

The buckling load of the square cylinder is given by (ref. 2, p. 355)
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The buckling load for the circular cylinder is

B, = 0.6 2 (2ran) ~ 3.8 En2
a

To have the same volume of material for both cylinders the plate thickness is
different; therefore, hy = Qfﬁ/2)h. The ratio of the buckling loads becomes
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If h/a = l/lOOO, then the square cylinder buckles at 1/500 of the classical
circular cylindrical load. Therefore, even though the behavior of the square
cylinder can be reliably predicted, the buckling load is far below that for a
circular cylinder with even large imperfections. In fact, the
difference in loads is so drastic that one might wonder if the
buckling load of a circular cylinder might be reduced if any

o small part of the cylinder were flat. Consider a cylinder that
has a "flat spot" which is assumed to be square (see
A sketch (b)). The edges of the flat spot are subject to elastic
/' \ constraints on both displacement and rotation so, Tor conven-

b lg— ience, the edges are assumed to be simply supported. The
applied load is assumed to be uniformly distributed over the

\ / flat spot before buckling so the buckling stress of the plate
vV is
2 2
Oap =Lm Dm:’3.6]£
Sketeh (b) hb® 2

If this critical stress is greater than O.6(Eh/a) (the critical stress for a
perfect cylinder), the imperfection would not be expected to affect the buck-
ling load of the cylinder. However, if it is less than 0.6(Eh/a), then at
least local buckling would be expected below the theoretical load. Therefore,
let

6 Ehi = 0.6 Eh

2 a
bCI‘
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which gives



Therefore, if this critical dimension of the flat spot, b.p, is about equal

to the characteristic length of the shell (the length required for axisymmet-
ric bending effects to damp out), local buckling can occur. Since Oop & l/b2
a small increase in the size of the flat spot would allow local buckling to
occur at loads far below the theoretical load. Of course, one wonders whether
a plate of such small dimensions is within the thin plate theory. The ratio
b/h for the plate is b/h = (2.LJan)/h = 2.4Ja/h ~ 75 for a/h = 1000, This
value is well within the range of thin plate theory.

If the shell has only one large flat spot, local buckling could occur
without causing a general collapse of the cylinder. This has been suggested
in reference 3 which gives limited experimental results for laboratory-
produced cylinders with single imperfections. Although these lowered the
buckling loads, the larger imperfections caused local instability before gen-
eral instability occurred. However, if a number of similar imperfections are
scattered over the shell or if the local buckling is propagated by the local
disruption of stress and deflection, then the overall buckling load of the
cylinder is greatly reduced.

Although the flat spot has been assumed to be a simply supported square
plate, the same order of magnitude of critical size would be obtained for many

somewhat similar shapes and edge condi-

|"2'4~/°_h_.| tions. (The appendix gives an estimate
P I N of the buckling stress of a diamond shaped

plate.) To gain a better feeling of the

e h critical size, consider a circular cross

section with an imperfection as shown in
sketch (c). The radial deviation & is
given by

5 =a -Na2 - (L.2+88)2 &~ 0.7h

Consider the less favorable imperfection

Sketch (c) shown in sketch (d). Here, the radial
deviation 8 varies in an oscillating
h"»zﬁ manner and i1s given by
/T\
S 5 =a -N(a+ 5)2 - L.hlhah
) 3
a
or
0.72ah J
dm~a-(a+d)|l -—= |~ -0+ 0.7Th
( ) [ (a + 8)%
Therefore
Sketch (d) ® ~ 0.35h



This shape, with the sharp corners, is unrealistic so a reasonable statement
might be that the radius should be accurate within, say, *h/2 to avoid the
possibility of a critical flat spot.

To offer a seemingly reasonable hypothesis for the overall buckling pro-
cess, let us consider the loading process of two cylinders. The first is a
perfect circular cylinder; the second cylinder has some region that is perfect
and has flat spots of a critical size in the remaining area. In a perfect
region or cylinder the imperfections are assumed to be of a negligible size
and to have an insignificant effect on the behavior of the region or cylinder
under the particular loading being investigated. According to the classical
theory, as the first cylinder is uniformly loaded, it undergoes uniform axial
shortening and stress-free radial expansion (away from the ends). When the
classical buckling stress (0.6(Eh/a)) is reached, an equilibrium configuration
in which the deflection varies sinusoildly in a checkerboard fashion can exist.
This configuration extends over the entire shell. For the second cylinder,

the theory for cylindrical shells can only

//,,————————~\\\\ describe the behavior of the perfect portion of
the shell. As the cylinder is loaded, assume that
\\\\\-_—_——”/// the imperfect region buckles at a load well below
the classical load. At this load, isolate the

buckled region and postulate what happens to the
remaining part of the cylinder (see sketch (e)).
Since the uniform compressive stress throughout
the cylinder is much less than 0.6(Eh/a), cylin-
drical shell theory says that a sinusoidally vary-
”Jﬁ¥ﬁ§f° ing deflection pattern cannot be in equilibrium
and, in fact, the displacements and stresses will
decay exponentially as the distance from the buck-
led region increases (see ref. 4, ch. 5). However,
the buckled region may propagate if the disruption
of stress and deflection or inertia forces near
the buckled region cause local instability; or a
\5\\\\__,,___—/// new buckled region may form in a different part of
Sketch (e) the shell if, for instance, a small increase in
load causes other flat spets to become of critical
size. The main point here is that there is no reason to expect the theoreti-
cal mode shape at loads below the classical load and, in fact, there is no
reason to expect it even at loads close to the theoretical load if the buck-
ling starts locally rather than simultaneously over the entire shell. Indeed,
something would appear to be wrong with the theory if the classical mode shape
were obtained experimentally at loads much less than the classical load. It
seems to the author, therefore, that there are reasons to expect the mode

shape to be much harder to correlate experimentally with theory than the
buckling load.

Buckled
region

Applications to Other Shell Problems

If these ideas are valid, they should apply to other shell problems as
well. For the externally pressurized spherical shell (sketch (f)), consider
a flat spot to be a simply supported circular plate. Its buckling stress is
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given by (ref. 2, p. 391)
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Equating this to the critical stress of a sphere
(0op = 0.6(Eh/R)), we get

bcr ~ l.6 \/ﬁl

So, one sees that the sphere is at least as sensitive to
a flat spot as the axially loaded cylinder. Next, con-
sider an externally pressurized long cylinder (sketch (g))
where, before buckling,

N, =0, Ny = pa

Consider the flat spot to be a simply supported plate with
critical stress

¢ En®

Oap = 3. 2

The critical stress for the cylinder is (ref. L4, p. 434)

2
~ Eh
OXCI‘ = 0-27 a—z—'

S0

b~ 3.7a

Thus under external pressure, the cylinder is not sensitive to flat spots
since the critical size is of the same order as the size of the shell. This

insensitivity agrees with the fact that classical theory and experiment are
in relatively good agreement for this loading condition (ref. 5).

The flat spot of a cylinder subjected to torsion is assumed to be a
simply supported square plate under pure shear. Its critical stress is
(ref. 2, p. 382)

For the shell (ref. 2, p. 504)

h3/2
Top A 0.2LE <?>



So,
3/ 4 1/ 4
b a 6h <—§> = ba <E>
h a
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a

For

R

~ B b~~a

1000

Therefore, long cylinders subjected to torsion are not sensitive to this type
of imperfection. Classical theory for this case also agrees quite well with
experiment (ref. 2, p. 506).

CONCLUDING REMARKS

A plausible reason has been offered as to why certain types of shells
under particular types of loading buckle at loads far below those predicéted by
theory. The hypothesis is that conventionally manufactured shells contain a
distribution of small regions of essentially zero curvature which can behave
as flat plates. For some types of shells and loading, these regions can be
quite small and still initiate local buckling at loads far below the theoreti-
cal load. In other words, the curved surface of a shell compared to a flat
surface causes an enormous increase in load-carrying capability for certain
types of shells and loading conditions but a small deviation in curvature for
these types causes a large reduction in the load carrying capability. It was
shown that the radius of an axially loaded cylinder should be accurate to
within about ih/2 to avoid the possibility of a critical sized flat spot. It
is interesting that reference 6 shows test results in which the buckling load
is about 80 percent of the classical value and the accuracy of the radius is
given to be *h/2.

The axially loaded cylinder and externally pressurized sphere are very
sensitive to flat spots compared to the other loading conditions considered.
This corresponds to the fact that the correlation between experiment and
theory is worse for the axially loaded cylinder and pressurized sphere. One
way to show whether or not the flat spots are the only cause of the drastic
reduction in load would be to test some cylinders for which the radius was
accurate within +h/2 under various types of imperfections in the boundary con-
ditions, loading, etc., and see whether or not experimental buckling loads
drastically below the classical loads could be obtained.
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APPENDIX

BUCKLING OF A DIAMOND-SHAPED PLATE

An approximate buckling load of the diamond-shaped plate shown below can
be obtained by using the method of minimum potential energy. The plate is

assumed to be under uniaxial compres-
sion and the edges are simply supported.
(a,0) A convenient coordinate system is

X

Nxo The boundaries are then given by

£ =21 and n = t1

{o,c)

The total potential energy expression
in Cartesian coordinates 1is

D
U+V = Eff [Vﬁxx+w?yy+sz’xxw’yy

+ 2(1- v)w? JC/P<§§ aA

Sketch (h) For the new coordinates,

=dx2+dy2=?i_:ﬁ(dg2+dn2) +E¥(d& dn)

- ac
dA = dsldg:o ds‘dn:o sin 20 = 5 dé dny

The total potential now becomes

1l ~1
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A form for w that satisfies the displacement constraints (w = 0, £ = *1,
and n = £1) is
oo}
W = j{:wn(sing ng - sin® n)(sin® nn - sin® n)

n=1

The single summation results from the mode shape being symmetrical. Substitut-

ing this into the total potential and performing the integration gives

> by nPn2
(U+V) = Da_ E: }: —E@¥§§3§- [4mPn®(1+8%) (= )2 = (14+82) 2 (nf -n?) Za o))

+ (1+82)2(n® -n®) (nfoy-nZa,) (cos 2mtcos 2n + Lsin n sin® m -1)]
o0
+ jg:2w§m4[3(l~&m)(l+82)2- 4p2(1-0,)% - 4(1+8%)3(1+dy)sin® m cos® m]
m=1
o0 o
Wy Wy IE2NE
- }: E{: AL (o=, [nPag -nfa + (m®-n2) (cos 2m+cos 2n
(m? n2)2
mrl n=1
- 1+h sin® m sin® n)l+ wanm2 E (1-a,)% - 2(1-G)sin® m cos® m}
=1
where
o« = 8in 2m cos 2n o = sin 2n cos 2m G = sin 2m cos 2m
o 2m ’ o 2n ’ m 2m
= ¢
P a
Since we know that
8(U+ V) =0

we can obtain a set of algebraic equations to determine wp. The series was
truncated after 1, 2, and 3 terms to get some feeling of the convergence
although it is recognized that this procedure is somewhat dangerous since the
fact that answers, for different number of terms, are close together may Just
indicate the convergence is very slow rather than that the answers are nearly
correct. The following table gives the numerical results.



(2c)2> -
; —= (NXO) critical
One term | Two terms Three terms
0.75 9.86 8.98 8.82
1.0 8.46 T7.59 7.55
1.25 9.28 8.35 8.30
So, taking B = 1.0,
o m7'5ﬁ2D
¢ (2¢)2n

The critical size, b = 2¢, for an axially loaded cylinder is given by

b a 3.3 an

Therefore, the critical size is seen to be of the same order of magnitude as
a square flat spot for the case of an axially loaded cylinder.
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